By Mitch Leslie
Human Immunome Project aims to capture immune data from thousands of people globally
The hepatitis B vaccine is one of the most potent immunizations, usually providing decades of protection against the deadly liver virus. But in about 10% of people it doesn’t work, and in 2020, Amy Huei-Yi Lee, a systems biologist at Simon Fraser University, and her colleagues set out to determine whether they could predict who would benefit. The scientists found that data on recipients’ immune systems such as the abundance of certain proteins and the activity patterns of a few genes foretold whether they would generate defenses against the virus. “We got a sense of what factors drive the vaccine response and what [doesn’t],” Lee says.
She and her colleagues were only able to take measurements from a handful of patients, but an ambitious effort slated to begin early this year will collect such data from hundreds of thousands of volunteers throughout the world. Called the Human Immunome Project (HIP) and backed by an international consortium of companies, government agencies, and universities, the effort will probe thousands of immune variables in blood and tissue samples. The result will likely be the world’s largest and most comprehensive immunological database, a resource for scientists investigating immune system differences and how they influence our responses to vaccines and drugs and our vulnerability to illness. “There’s a huge opportunity here in terms of understanding human disease,” says immunologist Mark Davis of Stanford University, who is not involved in the project.
And that’s just the start for the effort, which currently operates on about $5 million a year in funding but could ultimately cost billions. An offshoot of a previous effort known as the Human Vaccines Project, HIP will also use the data as fodder for new artificial intelligence (AI) models that could predict immune system responses across entire populations, providing valuable insights not just for pharmaceutical companies and governments, but even for doctors and patients. “The impacts will be felt globally,” says neuroscientist Hans Keirstead, the Irvine, California–based project’s CEO.
Defenders
Immune cells have a variety of roles, and cataloging them may help researchers take a snapshot of immune system health.
Scientists unconnected to the project say its goal of compiling a basic immune database for the world is feasible. “We have the experience and technology,” says immunologist Allison Greenplate of the University of Pennsylvania. But she and others question how much insight AI will add. “There is a lot of low-hanging fruit we don’t need AI to pick” but that researchers can parse themselves, says immunologist Paul Thomas of St. Jude Children’s Research Hospital.
In the field of cardiology, a lipid panel reveals a lot about a patient’s cardiovascular health and risk of disease. Immunology, however, doesn’t have a comparable set of simple measurements that indicate the status of a person’s immune system, Davis says. Some data can provide a rough gauge: Patients with reduced numbers of neutrophils, for instance, are prone to infections. But such data are limited. HIP aims to come up with a uniform group of measurements that can, like a lipid panel, provide a readout of the immune system’s functioning.
A few public and private efforts have scooped up some basic immune data from large numbers of people, including All of Us, the U.S. National Institutes of Health’s program to gather genomic and medical data from 1 million people, and Project Baseline from the Google offshoot Verily, which tallied information on how individuals responded to COVID-19 infection. But such projects have collected limited categories of information and, in Project Baseline’s case, haven’t made the data available publicly.
Another area where research has fallen short is “the understanding of human immune variation and diversity,” says John Tsang, a systems immunologist at Yale University who helped develop HIP’s scientific plan. A litany of factors—including age, sex, diet, living conditions, previous disease exposure, and genetics—shapes how the immune system functions. But most immunological studies are conducted on small, homogenous populations, usually in the United States or Europe, Tsang says. Relying on such a narrow slice of humanity “has biased our understanding,” Thomas says.
Source: Science.com